COVID-19 Response: Local Logistics     National Effort

A dPIP5K dependent pool of phosphatidylinositol 4,5 bisphosphate (PIP2) is required for G-protein coupled signal transduction in Drosophila photoreceptors.[Drosophila facility]

You are here

COVID-19 Response: Local Logistics     National Effort

TitleA dPIP5K dependent pool of phosphatidylinositol 4,5 bisphosphate (PIP2) is required for G-protein coupled signal transduction in Drosophila photoreceptors.[Drosophila facility]
Publication TypeJournal Article
Year of Publication2015
AuthorsChakrabarti P, Kolay S, Yadav S, Kumari K, Nair A, Trivedi D, Raghu P
JournalPLoS Genet
Volume11
Issue1
Paginatione1004948
Date Published2015 Jan
ISSN1553-7404
KeywordsAnimals, Cell Membrane, Cytoskeleton, Drosophila, Drosophila melanogaster, Light Signal Transduction, Membrane Proteins, Ocular Physiological Phenomena, Phosphatidylinositol 4,5-Diphosphate, Phosphoinositide Phospholipase C, Phosphotransferases (Alcohol Group Acceptor), Photoreceptor Cells, Retina, Signal Transduction
Abstract

Multiple PIP2 dependent molecular processes including receptor activated phospholipase C activity occur at the neuronal plasma membranes, yet levels of this lipid at the plasma membrane are remarkably stable. Although the existence of unique pools of PIP2 supporting these events has been proposed, the mechanism by which they are generated is unclear. In Drosophila photoreceptors, the hydrolysis of PIP2 by G-protein coupled phospholipase C activity is essential for sensory transduction of photons. We identify dPIP5K as an enzyme essential for PIP2 re-synthesis in photoreceptors. Loss of dPIP5K causes profound defects in the electrical response to light and light-induced PIP2 dynamics at the photoreceptor membrane. Overexpression of dPIP5K was able to accelerate the rate of PIP2 synthesis following light induced PIP2 depletion. Other PIP2 dependent processes such as endocytosis and cytoskeletal function were unaffected in photoreceptors lacking dPIP5K function. These results provide evidence for the existence of a unique dPIP5K dependent pool of PIP2 required for normal Drosophila phototransduction. Our results define the existence of multiple pools of PIP2 in photoreceptors generated by distinct lipid kinases and supporting specific molecular processes at neuronal membranes.

DOI10.1371/journal.pgen.1004948
Alternate JournalPLoS Genet.
PubMed ID25633995
PubMed Central IDPMC4310717
Grant List / / Biotechnology and Biological Sciences Research Council / United Kingdom