@article {456, title = {Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell{\textquoteright}s Viper venom.[Mass Spectrometry]}, journal = {Biochimie}, volume = {128-129}, year = {2016}, month = {2016 Sep-Oct}, pages = {138-47}, abstract = {

Snake venom Kunitz-type serine protease inhibitors (KSPIs) exhibit various biological functions including anticoagulant activity. This study elucidates the occurrence and subunit stoichiometry of a putative complex formed between two KSPIs (Rusvikunin and Rusvikunin-II) purified from the native Rusvikunin complex of Pakistan Russell{\textquoteright}s Viper (Daboia russelii russelii) venom (RVV). The protein components of the Rusvikunin complex were identified by LC-MS/MS analysis. The non-covalent interaction between two major components of the complex (Rusvikunin and Rusvikunin-II) at 1:2 stoichiometric ratio to form a stable complex was demonstrated by biophysical techniques such as spectrofluorometric, classical gel-filtration, equilibrium gel-filtration, circular dichroism (CD), dynamic light scattering (DLS), RP-HPLC and SDS-PAGE analyses. CD measurement showed that interaction between Rusvikunin and Rusvikunin-II did not change their overall secondary structure; however, the protein complex exhibited enhanced hydrodynamic diameter and anticoagulant activity as compared to the individual components of the complex. This study may lay the foundation for understanding the basis of protein complexes in snake venoms and their role in pathophysiology of snakebite.

}, issn = {1638-6183}, doi = {10.1016/j.biochi.2016.08.005}, author = {Mukherjee, Ashis K and Dutta, Sumita and Kalita, Bhargab and Jha, Deepak K and Deb, Pritam and Mackessy, Stephen P} } @article {516, title = {A new C-type lectin (RVsnaclec) purified from venom of Daboia russelii russelii shows anticoagulant activity via inhibition of FXa and concentration-dependent differential response to platelets in a Ca{\texttwosuperior}$^{+}$-independent manner. (Mass spectrometry)}, journal = {Thromb Res}, volume = {134}, year = {2014}, month = {2014 Nov}, pages = {1150-6}, abstract = {

This is the first report on the characterization of a snaclec (RVsnaclec) purified from Daboia russelii russelii venom. The RVsnaclec is a heterodimer of two subunits, α (15.1 kDa) and β (9 kDa). These subunits are covalently linked to form multimeric (αβ)$_{2}$ and (αβ)$_{4}$ structures. Peptide mass fingerprinting analysis of RVsnaclec via LC-MS/MS demonstrated its similarity to snaclecs purified from other viperid snake venoms. Two tryptic peptide sequences of RVsnaclec revealed the putative conserved domains of C-type lectin (CTL). RVsnaclec dose-dependently increased the Ca-clotting time and prothrombin time of platelet-poor plasma (PPP); however, it did not affect the partial thromboplastin time (APTT) or thrombin time of PPP. The in vitro and in vivo anticoagulant activity of RVsnaclec is correlated to its binding and subsequent uncompetitive inhibition of FXa (Ki = 0.52 μmole) in a Ca(2+)-independent manner; however, supplementation with 0.25 mM Ca(2+) enhanced the Xa binding potency of RVsnaclec. Monovalent or polyvalent antivenom failed to neutralize its anticoagulant potency, and RVsnaclec did not inhibit trypsin, chymotrypsin, thrombin or plasmin. RVsnaclec was devoid of hemolytic activity or cytotoxicity against several human cancer cell lines, demonstrated concentration-dependent aggregation and deaggregation of human platelets, and inhibited the ADP-induced aggregation of platelet. RVsnaclec (5.0 mg/kg body weight) was non-lethal to mice and showed no adverse pharmacological effects, suggesting that it has potential as a lead compound for future therapeutic applications in cardiovascular disorders.

}, keywords = {Animals, Anticoagulants, Blood Coagulation, Blood Platelets, Calcium, Factor Xa, Factor Xa Inhibitors, Goats, Humans, Lectins, C-Type, Mice, Platelet Aggregation, Russell{\textquoteright}s Viper, Viper Venoms}, issn = {1879-2472}, doi = {10.1016/j.thromres.2014.09.009}, author = {Mukherjee, Ashis K and Dutta, Sumita and Mackessy, Stephen P} }