@article {507, title = {Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro. [Protein Technology Core]}, journal = {PLoS One}, volume = {10}, year = {2015}, month = {2015}, pages = {e0123428}, abstract = {

Ezrin, a member of the ERM (Ezrin/Radixin/Moesin) protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2) or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction) of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

}, keywords = {Actins, Animals, Avian Proteins, Chickens, Cytoskeletal Proteins, In Vitro Techniques, Microfilament Proteins, Models, Molecular, Protein Interaction Domains and Motifs, Recombinant Fusion Proteins}, issn = {1932-6203}, doi = {10.1371/journal.pone.0123428}, author = {Shrivastava, Rohini and K{\"o}ster, Darius and Kalme, Sheetal and Mayor, Satyajit and Neerathilingam, Muniasamy} } @article {479, title = {Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse. [Drosophila facility]}, journal = {Traffic}, volume = {13}, year = {2012}, month = {2012 Jul}, pages = {979-91}, abstract = {

Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.

}, keywords = {Animals, Animals, Genetically Modified, Axonal Transport, Carrier Proteins, Choline O-Acetyltransferase, Cholinergic Neurons, Drosophila, Drosophila Proteins, Fluorescence Recovery After Photobleaching, Kinesin, Larva, Microtubule-Associated Proteins, Protein Interaction Domains and Motifs, Synapses}, issn = {1600-0854}, doi = {10.1111/j.1600-0854.2012.01361.x}, author = {Sadananda, Aparna and Hamid, Runa and Doodhi, Harinath and Ghosal, Debnath and Girotra, Mukul and Jana, Swadhin Chandra and Ray, Krishanu} }