Title | Identification of novel vaccine candidates in the whole-cell Aeromonas hydrophila biofilm vaccine through reverse vaccinology approach [Mass Spectrometry - Proteomics Facility] |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Kaur B, Kumar B.T.Naveen, Tyagi A, Holeyappa SAdmane, Singh NKumar |
Journal | Fish & Shellfish Immunology |
Volume | 114 |
Pagination | 132-141 |
ISSN | 1050-4648 |
Keywords | Biofilm vaccine, isolates, Protection, Protective protein, Proteomics, Reverse vaccinology |
Abstract | Biofilm vaccine has been recognised as one of the successful strategy to reduce the Aeromonas hydrophila infection in fish. But, the vaccine contains the protective and non-protective proteins, which may lead to show altered heterologous adaptive immunity response. Moreover, cross protection and effectiveness of previously developed biofilm vaccine was not tested against different geographical A. hydrophila isolates. Therefore, in the present study, whole-cell A. hydrophila biofilm vaccine was evaluated in rohu, vaccinated group showed increased antibody titer and protection against the different geographical A. hydrophila isolates namely KAH1 and AAH2 with 78.9% and 84.2% relative percentage survival, respectively. In addition, by using the immune sera of biofilm vaccinated group, a total of six protective proteins were detected using western blot assay. Further, the same proteins were identified by nano LC-MS/MS method, a total of fourteen candidate proteins showing the immunogenic property including highly expressed OMP's tolC, bamA, lamb, AH4AK4_2542, AHGSH82_029580 were identified as potential vaccine candidates. The STRING analysis revealed that, top candidate proteins identified may potentially interact with other intracellular proteins; involved in ribosomal and (tricarboxylic acid) TCA pathway. Importantly, all the selected vaccine candidate proteins contain the B-cell epitope region. Finally, the present study concludes that, whole-cell A. hydrophila biofilm vaccine able to protect the fish against the different geographical A. hydrophila isolates. Further, through reverse vaccinology approach, a total of fourteen proteins were identified as potential vaccine candidates against A. hydrophila pathogen. |
URL | https://www.sciencedirect.com/science/article/pii/S1050464821001091 |
DOI | 10.1016/j.fsi.2021.04.019 |
- Log in to post comments
- Google Scholar
- BibTex